Solubility in the NH₄HCO₃ + NH₄VO₃ + H₂O System

Mieczysław Trypuć* and Urszula Kiełkowska

Faculty of Chemistry, Nicolaus Copernicus University, Gagarin st. 7, 87-100 Toruń, Poland

The solubility of ammonium bicarbonate and ammonium vanadate in the $NH_4HCO_3 + NH_4VO_3 + H_2O$ system has been investigated at 293 K to 323 K. A polytherm section of the system has been drawn. The change of mutual salt concentrations and the density of the solutions as a function of the temperature have been described by the appropriate equations. The equations can be used for the detailed calculations of the NH_4HCO_3 concentration and the density of the solutions for any temperature within the investigated range.

Introduction

There have been studies on the method of simultaneous production of soda and hydrochloric acid or chlorine based on NaCl and the intermediate reactant V_2O_5 in the presence of steam or oxygen (U.S. patent, 1967). Chemical reactions presented in patent-67 do not give any information about the kinetics of carbonation and crystallization processes of NH_4VO_3 or the determination of the composition of the solutions subject to carbonation.

Trypuć and Kiełkowska (1995) presented the results of the equilibrium in the NaVO₃ + NaHCO₃ + H₂O system. These results are useful for obtaining isotherms of the reciprocal salt pairs system NaVO₃ + NH₄HCO₃ + H₂O in the oblique projection according to Janecki (Wiktorow, 1975). Such diagrams are necessary to determine the optimum conditions for carrying out the modified soda production process based on the Solvay method. The ternary system is represented by one side of the equilibrium diagram square. The rest of the sides represent the following systems: NH₄HCO₃ + NH₄VO₃ + H₂O, NaVO₃ + NH₄VO₃ + H₂O, and NaHCO₃ + NH₄HCO₃ + H₂O. This last system has been studied previously (Pelsh, 1969).

This paper deals with the NH₄HCO₃ + NH₄VO₃ + H₂O system. Equilibrium studies were made in the temperature range 293 K to 323 K. This planned research in the given range of temperatures was caused mainly by two important factors: the decomposition temperature of NH₄HCO₃ (ca. 333 K) (Niederliński et al., 1978) and the highest maximal temperature attainable in the carbonating columns in Solvay's method of producing soda (Szokin and Kraszeninnikow, 1975).

Experimental Section

The investigations on the solubility of ammonium bicarbonate and ammonium vanadate in water were carried out in the temperature range 293 K to 323 K. The determination of the solubility isotherms of the $\rm NH_4HCO_3$ + $\rm NH_4VO_3$ + $\rm H_2O$ system required conducting many equilibrium investigations.

Analytical grade salts NH₄HCO₃ (POCh Gliwice, Poland) and NH₄VO₃ (Aldrich Chemical Co. Ltd.) were used.

The apparatus has been described previously by Koneczny *et al.* (1978) and Trypuć (1980). The effect of pressure at 313 K and 323 K was given by Trypuć (1974). Erlenmeyer flasks, each 100 cm^3 capacity, containing suitable amounts of salt and distilled water, were closed with stoppers and placed in the thermostat for both temperatures 293 K and 303 K.

For both temperatures 313 K and 323 K the precise measurements were taken in the reaction flask closed with a rubber stopper, with two glass tubes in it. One of them was closed by a funnel for pouring in water, while the other served for obtaining a vacuum, letting in CO_2 , and sequential sampling. The reaction flask was linked with a U-tube manometer, filled with mercury, in order to measure the actual pressure with an accuracy of ± 0.5 mm.

To achieve higher levels of solution carbonation (R > 90%) at 313 K and 323 K, additional gaseous CO₂ at pressures up to 2.5 bar to 3.0 bar was added. It was a guarantee to find both in the solution and in the precipitate only NH₄HCO₃ salt and not the binary mixture of NH₄HCO₃ and (NH₄)₂CO₃.

The time of thermostating the individual samples was 72 h, while the samples were being constantly stirred. This ensured equilibrium between the solution and the solid phase at the given temperature. The temperatures were measured with an accuracy of ± 0.1 deg.

After the set time limit stirring was stopped in order to decant the solid phase. The clear solution was sampled to the calibrated, at the given temperature, Ostwald pycnometer. The use of this pycnometer was necessary to measure the density of the systems with higher pressures. The total content of the pycnometer served for determination of VO_3^- and NH_4^+ ion concentrations.

The concentration of $\mathrm{VO_3^-}$ ions was determined by the manganometric method after reduction with iron(II) (Struszyński, 1954; Williams, 1985). The concentration of $\mathrm{NH_4^+}$ ions was determined by the distillation method with the addition of Devard's alloy, which protected $\mathrm{NH_3}$ from being oxidized to $\mathrm{N_2}$ under the influence of $\mathrm{VO_3^-}$ ions (Struszyński, 1954; Williams, 1985).

The identification of the solid phases in equilibrium solution was performed by analytical and X-ray methods. The qualitative analyses were carried out on an X-ray diffractometer (HZG-4/A-2; GDR) with continuous registration. The X-ray analysis of the solid phases were based on the distribution curves of the dispersed radiation intensity $I = f(\theta)$.

^{*} e-mail: glyjak@anna.mat.uni.torun.pl.

Figure 1. Solubility of NH₄HCO₃ and NH₄VO₃ in the NH₄HCO₃ + NH₄VO₃ + H₂O system: (\Box) *T* = 293 K; (\diamond) *T* = 303 K; (\times) *T* = 313 K; (\triangle) *T* = 323 K.

Results and Discussion

Branches I (Figure 1) of the solubility isotherms correspond to solutions saturated with NH_4HCO_3 with increasing concentrations of NH_4VO_3 toward the eutonic points.

Branches II (Figure 1) correspond to solubility isotherms where the solution was saturated with NH_4VO_3 and the concentration of NH_4HCO_3 was increasing toward the eutonic points.

The eutonic points E correspond to the solutions saturated with both NH_4HCO_3 and NH_4VO_3 .

The solubility of ammonium bicarbonate and ammonium vanadate in water is presented in Table 1. Figure 1 shows a polytherm of the $NH_4HCO_3 + NH_4VO_3 + H_2O$ system. The dependence of solution density on the concentration of NH_4VO_3 is shown in Figure 2.

The salt concentration and the density of the solutions on the individual branches of the solubility isotherms, as well as the temperature dependence, have been described with appropriate mathematical equations.

As can be seen from Table 1, the concentration of ammonium bicarbonate changes slightly with the increase in the ammonium vanadate concentration (branch I). Consequently, this slight dependence has been introduced to the equation for the temperature dependence which shows the overall relation given by the equation

$$c(\mathrm{NH}_4\mathrm{HCO}_3)/\mathrm{mol}\cdot\mathrm{dm}^{-3} = Ac(\mathrm{NH}_4\mathrm{VO}_3)/\mathrm{mol}\cdot\mathrm{dm}^{-3} + B_1(T/\mathrm{K})^2 + B_2(T/\mathrm{K}) + B_3$$
 (1)

The change of ammonium vanadate concentration in the eutonic points, depending on temperature, is presented by the equation

$$c_{\rm E}({\rm NH_4VO_3})/{\rm mol}\cdot{\rm dm}^{-3} = B({\rm T/K})^2 + B_2({\rm T/K}) + B_3$$
 (2)

The influence of temperature on the NH₄VO₃ solubility in water is given by the equation

$$c(\mathrm{NH}_4\mathrm{VO}_3)/\mathrm{mol}\cdot\mathrm{dm}^{-3} = B_1(T/\mathrm{K})^2 + B_2(T/\mathrm{K}) + B_3$$
 (3)

Equations 2 and 3 are necessary for determining the equilibrium concentrations of NH_4HCO_3 and NH_4VO_3 for

Table 1. Solubility in the System $\rm NH_4HCO_3 + \rm NH_4VO_3 + H_2O$

	g∙cm ⁻³				NHLHCO	composition
<i>T</i> /K	ρ	ρ (calc)	NH ₄ VO ₃	NH ₄ HCO ₃	(calc)	solid phase
293	1.072	1.072	0	2.317	2.312	NH ₄ HCO ₃
	1.073	1.073	0.0232	2.318	2.314	NH ₄ HCO ₃
	1.074	1.073	0.0436	2.319	2.315	NH_4HCO_3
	1.074	1.074	0.0593	2.321	2.317	NH ₄ HCO ₃
	1.074	1.074	0.0601	2.322	2.317	NH ₄ HCO ₃
	1.076	1.076	0.0981	2.325	2.320	NH ₄ HCO ₃
	1.076	1.079	0.1012	2.331	2.320	NH4HCO3, NH4VO3
	1.072	1.079	0.0984	2.180	2.174	NH_4VO_3
	1.062	1.069	0.0916	1.865	1.864	NH_4VO_3
	1.060	1.067	0.0901	1.800	1.796	NH_4VO_3
	1.037	1.045	0.0751	1.117	1.109	NH_4VO_3
	1.021	1.030	0.0647	0.642	0.640	NH_4VO_3
	1.001	1.009	0.0503	0	0.015	NH_4VO_3
303	1.094	1.094	0	2.854	2.862	NH_4HCO_3
	1.094	1.095	0.0245	2.857	2.864	NH ₄ HCO ₃
	1.095	1.095	0.0395	2.859	2.865	NH ₄ HCO ₃
	1.096	1.095	0.0450	2.860	2.866	NH ₄ HCO ₃
	1.096	1.097	0.0750	2.864	2.868	NH_4HCO_3
	1.098	1.099	0.1254	2.871	2.872	NH ₄ HCO ₃
	1.098	1.099	0.1308	2.872	2.872	NH ₄ HCO ₃
	1.099	1.094	0.1340	2.872	2.872	NH ₄ HCO ₃ , NH ₄ VO ₃
	1.086	1.078	0.1268	2.550	2.527	NH_4VO_3
	1.083	1.075	0.1251	2.467	2.447	NH ₄ VO ₃
	1.062	1.057	0.1132	1.886	1.886	NH ₄ VO ₃
	1.044	1.038	0.1012	1.337	1.320	NH ₄ VO ₃
	1.027	1.024	0.0925	0.910	0.910	NH ₄ VO ₃
010	1.002	0.994	0.0738	0	0.028	NH_4VO_3
313	1.110	1.115	0	3.839	3.862	NH ₄ HCO ₃
	1.110	1.110	0.0177	3.843	3.864	NH_4HCO_3
	1.118	1.118	0.0545	3.847	3.800	NH4HCO3
	1.118	1.118	0.0736	3.831	3.808	NH4HCO3
	1.120	1.120	0.1077	2 957	3.070	$NH HCO_3$
	1.122	1.122	0.1083	3.637	3.075	NH ₄ HCO ₃
	1.122	1.110	0.1775	2 200	2 954	NH ₄ VO ₃
	1.033	1.033	0.1033	2 806	2 803	NH ₄ VO ₃
	1.031	1.075	0.1318	2.000	1 434	NH ₄ VO ₃
	1.044	1.037	0.1310	0.982	0.989	NH ₄ VO ₃
	1.001	1.024	0.1200	0.502	0.576	NH ₄ VO ₃
	1.010	0.993	0.1050	0	0.022	NH ₄ VO ₃
323	1 1 38	1 137	0	5 277	5 312	NH4HCO ₂
020	1.138	1.138	0.0281	5.281	5.314	NH4HCO ₂
	1.139	1.140	0.0783	5.288	5.318	NH ₄ HCO ₃
	1.139	1.142	0.1152	5.294	5.321	NH ₄ HCO ₃
	1.140	1.145	0.1808	5.299	5.326	NH ₄ HCO ₃
	1.141	1.146	0.2276	5.312	5.329	NH ₄ HCO ₃
	1.142	1.145	0.2290	5.313	5.329	NH ₄ HCO ₃ , NH ₄ VO ₃
	1.136	1.140	0.2263	5.191	5.137	NH ₄ VO ₃
	1.116	1.119	0.2135	4.316	4.309	NH ₄ VO ₅
	1.087	1.092	0.1975	3.296	3.274	NH ₄ VO ₃
	1.027	1.031	0.1610	0.197	0.912	NH ₄ VO ₃
	1.016	1.202	0.1545	0.490	0.492	NH ₄ VO ₃
	1.005	1.011	0.1490	0.135	0.136	NH_4VO_3
	1.003	1.008	0.1472	0	0.019	NH_4VO_3

branch II of the solubility isotherms limited by the eutonic points E and the solubility of NH_4VO_3 in water.

The temperature dependencies of the density and the saturated solutions of ammonium vanadate are also described by appropriate equations shown in Figure 2.

For branch I of the solubility isotherms (the crystallization area of NH_4HCO_3), the change of the solution density is given by the equation

$$\rho_{\rm I}/{\rm g} \cdot {\rm cm}^{-3} = Ac({\rm NH_4VO_3})/{\rm mol} \cdot {\rm dm}^{-3} + B_2(T/{\rm K}) + B_3$$
 (4)

For branch II of the solubility isotherms (the crystallization area of NH_4VO_3), the changes of density are given by the equation

Figure 2. Density-concentration relationships of NH₄VO₃ in the $NH_4HCO_3 + NH_4VO_3 + H_2O$ system: (\Box) T = 293 K; (\diamond) T = 303K; (×) T = 313 K; (\triangle) T = 323 K.

$$\rho_{\rm II}/\text{g·cm}^{-3} = (B_1(T/\text{K})^2 + B_2(T/\text{K}) + B_3)c(\text{NH}_4\text{VO}_3)/$$

mol·dm⁻³ + $C_1(T/\text{K}) + C_2$ (5)

The numerical values of the coefficients and the average relative error of the above given eqs 1-5 are shown in Table 2.

From Table 1 the equations for the solution density and saturated solutions of the salts are in good agreement with the experimental values.

The solubility isotherms (Figure 1) show that with the increase of NH₄VO₃ concentration (the crystallization area of NH₄HCO₃, branch I), the concentration of NH₄HCO₃ increases slightly toward the eutonic points.

The course of branch II of the respective isotherm shows that the concentration of NH₄HCO₃ decreases rapidly (beginning from the eutonic points) along with the slight changes of NH₄VO₃ concentration for a given temperature.

From Figure 1 the individual isotherms do not differ from each other; the shift being caused primarily by the changes of temperature. The solubility of NH4HCO3 and NH₄VO₃ increases with the increase of temperature.

The concentration of NH₄HCO₃ at T = 323 K is 127% higher than that at T = 293 K, whereas the solubility of NH₄VO₃ is 192% higher for the same conditions. Hence, the solubility of NH₄VO₃ depends more on temperature than on the solubility of NH₄HCO₃.

Table 2. Coefficients and the Average Relative Error in Eqs 1-5

		values of the coefficients								
eq	A	$10^{-4} B_1$	$10^{-2} B_2$	B_3	$10^{-3} C_1$	C_2	error/%			
1	0.075	22.5	-128.6	-185.95			0.34			
2		0.49	-2.592	3.489			0.26			
3		0.4675	-2.558	3.5319			0.39			
4	0.04		0.219	0.43			0.07			
5		-2.49	16.02	-24.1	-5.75	2.62	0.58			

For saturated solutions of NH₄HCO₃, the densities of the solutions increase slightly with the increase in NH₄VO₃ concentration and reach a maximum at the eutonic points E. Having crossed the points, the densities decrease to the values of the densities of saturated solutions of NH₄VO₃ (Figure 2).

The crystallization area of the salt of the lowest solubility, NH₄VO₃, spreads out in the Janecki diagram of the reciprocal salt pairs system (NaVO₃ + NH₄HCO₃ + H₂O) over the largest area.

On the basis of the X-ray analysis of the precipitates and the monotonic course of the solubility isotherms, it can be concluded that a new solid phase is not created in this system (Sułajmankułov, 1971).

Literature Cited

- Koneczny, H.; Lango, D.; Lango, M. The investigations on KCl-NH₃-H₂O system. Chem. Stos. 1978, 22, 115-125 (in Polish).
- Niederliński, A.; Bukowski, A.; Koneczny, H. Soda i produkty towarzyszące; WNT: Warsaw, Poland, 1978.
- Pelsh, A. D. Spravotschnik po Rastvorimosti Solyevykh System, "Nauka"; Goskhimisdat: Leningrad, Russia, 1969; Vol. III. Struszyński, M. Analiza ilościowa i techniczna; PWT: Warsaw, Poland,
- 1954.
- Sułajmankułov, K. Sojedinienia karbamida s nieorganitscheskimi soliami; ILIM: Frunze, Russia, 1971.
- Szokin, I. N.; Kraszeninnikow, S. A. Technologia sody, Chimia: Moscow, Russia, 1975.
- Trypuć, M. The equilibrium investigations of the systems: NaCl-NH₃-CO₂-H₂O, NaNO₃-NH₃-CO₂-H₂O, KCl-NH₃-CO₂-H₂O, KNO₃-NH₃- CO_2 -H₂O, in the presence of urea, in the triple point P₁. UMK Toruń 1974 (in Polish)
- Trypuć, M. The solubility investigations of NaCl in aqueous ammonia solution in the presence of urea. Chem. Stos. 1980, 24, 365-376 (in Polish)
- Trypuć, M.; Kiełkowska, U. The investigation on NaVO3-NaHCO3-H2O system. Pol. J. Appl. Chem. **1995**, *1*, 103–109. U.S. Patent 3.313.593, 1967.
- Wiktorow, M. M. Obliczenia graficzne w technologii substancji nieorganicznych; WNT: Warsaw, Poland, 1975.
- Williams, W. J. Oznaczanie anionów, PWN: Warsaw, Poland, 1985.

Received for review November 16, 1995. Accepted May 21, 1996.8 This work was supported by Grant No. 3 T09B 13808 from Komitet Badań Naukowych (State Committee for Scientific Research).

JE950290C

[®] Abstract published in Advance ACS Abstracts, July 15, 1996.